




Y varies directly as
$$\chi$$
. \Rightarrow $y = K\chi$

y is 50 when χ is 5. \Rightarrow 50 = K(5)

Sind y when χ is 20.

 $y = 10(20)$

y = 10(20)

y = 10(20)

y = 10(20)

y = 10(20)

y = 10 \text{3}

y = \text{3}

y = \text{4}

y = \text{5}

Sind y when χ is 2.

 $y = \frac{\chi}{20}$
 $y = \frac{\chi}{20}$

Y varies directly as
$$\chi^3$$
. \Rightarrow $y=K\chi^3$

Y is 64 when χ is $2\Rightarrow$ 64= K(2)

Sind y when χ is 3.

 $y=8(3)^3$
 $=8(27)=9y=216$

Y varies inversely as
$$\sqrt{x}$$
.

Y is 25 when x is 16.

Sind Y when $x = \frac{100}{\sqrt{x}}$
 $y = \frac{100}{\sqrt{100}} = \frac{100}{10} = 10$
 $y = 10$

Factor Completely:

$$3x^2 - 5x - 8 = 3x^2 + 3x + 8x - 8$$

 $-24 = 1,-24 = 3x(x+1) - 8(x+1)$
Product $\Rightarrow -24 = 2,-12 = (x+1)(3x - 8)$
Sum $\Rightarrow -5 = 4,-6$
 $36x^2 - 49 = (6x)^2 - (7)^2 = 4^2 - 8^2$
 $= (6x + 7)(6x - 7)$
 $37x^3 + 125 = (3x)^3 + (5)^3 = 4^3 + 8^3$
 $= (3x + 5)(9x^2 - 15x + 25)$
 $64x^3 - 27y^3 = (4x)^3 - (3y)^3 = 4^3 - 8^3$
SG 5
Factoring)
 $= (4x - 3y)(16x^2 + 12xy + 9y^2)$